國	立	東	華	大	學	招	生	考	試	試	題	第	.頁,共	2	頁
---	---	---	---	---	---	---	---	---	---	---	---	---	------	---	---

招	生鸟	是 年	度	103 招 生 類 別 碩士班					
系	所	班	別	電機光電碩士班聯合招生(電機工程學系碩士班、電機工程學系 電子工程碩士班、光電工程學系碩士班)					
科	目	名	稱	控制系統					
注	意	事	項	本考科可使用掌上型計算機					

1. (10%) Find the transfer function, $T(s) = \frac{C(s)}{R(s)}$, for the system shown in Figure 1.

Figure 1.

- 2. (15%) Design the values of K_1 and K_f in the system of Figure 2 to meet the following specifications:
 - (i) the velocity error constant $K_v = 10$; (ii) the damping ratio $\zeta = 0.5$.

Figure 2.

- 3. Consider the system shown in Figure 3.
 - (a) (5%) Use the Routh-Hurwitz criterion to find the range of K for closed-loop stability.
 - (b) (5%) What is the system type?
 - (c) (5%) What is the steady-state error for a unit step input?

Figure 3.

國立東華大學招生考試試題 第一頁,共一頁

					·				
招	生	學 年	度	103	招	生	類	別	碩士班
系	所	班	別	電機光電碩士班聯合招生(電機 班、光電工程學系碩士班)	工程	學系	碩士理	汪、?	電機工程學系 電子工程碩士
科	目	名	稱	控制系統					
注	意	事	項	本考科可使用掌上型計算機					

4. (10%) Using the Routh-Hurwitz criterion, determine whether the unity feedback system of Figure 4 is stable if

$$G(s) = \frac{24}{s(s^3 + 9s^2 + 28s + 38)}$$

and tell how many closed-loop poles are in the left half plane of s = -2 (poles with real part less than -2).

Figure 4.

5. (20%) Consider the following transfer-function system:

$$\frac{Y(s)}{U(s)} = \frac{2s^2 + 6s + 5}{(s+1)^2(s+2)}$$

Use the parallel decomposition method to represent the above system in the state-variable Jordan canonical form.

6. (10%) Give a control system in the following:

$$\dot{x}(t) = \begin{bmatrix} 0 & 50 \\ -200 & -200 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 200 \end{bmatrix} u(t) + \begin{bmatrix} -50 \\ 0 \end{bmatrix} d(t), \quad y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t),
\dot{z}(t) = r(t) - y(t), \quad u(t) = \begin{bmatrix} k_1 & k_2 \end{bmatrix} x(t) - k_3 z(t)$$

If the eigenvalues of the closed-loop system are at s = -300, $-10 \pm j10$, find k_1, k_2 , and k_3 .

- 7. (20%) Explain the following phrases.
 - (a) Completely observable.
 - (b) Full-order state observer.
 - (c) Rise time.
 - (d) Settling time.