國立東華大學招生考試試題 第 頁,共 頁

招	生。	學 年	度	103	招	生	類	別	碩士班	
系	所	班	別	電機光電碩士班聯合招生(電機工程學系碩士班、電機工程學系 電子工程碩士班、光電工程學系碩士班)、材料科學與工程學系碩士班						
科	目	名	稱	近代物理						
注	意	事	項	本考科可使用掌上型計算機;內容以近代物理導論為主。						

c is the speed of light.

Planck's constant $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$

- 1. (10%) With what speed will a clock have to be moving in order to run at a rate that is one-half the rate of a clock at rest? Express your answer in c.
- 2. (10%) A spacecraft moves at a speed of 0.9c. If its length is L as measured by an observer on the spacecraft, what is the length measured by a ground observer?
- 3. (20%) Molybdenum(闺) has a work function of 4.2 eV. (a) Find the threshold frequency for the photoelectric effect. (b) Find the stopping voltage if the incident light has a wavelength of 200 nm.
- 4. (10%) A photon is emitted from a hydrogen atom that undergoes an electronic transition from the state n = 3 to the state n = 2. Find the wavelength of the emitted photon.
- 5. (10%) Halogens have one fewer electron than the inert gases. Please write down the electron configurations of lithium (Li), neon (Ne) and sodium (Na).
- 6. (10%) (a) Please write down the 1-D time-dependent Schrödinger equation. (b) Please write down the 1-D time-independent Schrödinger equation.
- 7. (20%) An electron is in a one-dimensional infinite well. Please use the time-independent Schrodinger equation to derive the following equation:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$$
 $n = 1, 2, 3, ...$

8. (10%) For an electron in the hydrogen atom, if the angular momentum quantum number l=2: (a) What are the possible values of L_Z (the z component of angular momentum)? (b) What is the magnitude of L (the angular momentum)?